AD-A116 610 MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE--ETC F/6 12/1
THE FINITE ELEMENT METHOO FOR PARABOLIC EQUATIONS. I, A POSTERI=-~ETC (U)
PR 82 M BIETERMAN: I BABUSKA N0001’l-77-c-0625
UNCLASSIFIED N-9B

|
au
] ':m




QTS FILE COPY ~7

AD A116610

4

T TITUTE FOIR ok 0710 S @ miiee
FND TECH LG

Laboratory for Numerical Analysis

Technical Note BN-983

THE FINITE ELEMENT METHOD FOR PARABOLIC EQUATIONS

I. A POSTERIORI ERROR ESTIMATION

by

M. Bieterman

and
1. BabuBka DTIC
ELECTE
JUL7 1982 .

D

April 1982 82 ¢ 06 W6

Approved for public 1elease;

" DISTRIBUTION STATEMENT A
Distribution Unlimited

prooor

Gl




ENCE iy
SECURITY CLASSIFICATION OF THIS PAGE "hen Deie Entered)
REPORT DOCUMENTATION PAGE ,,,%%ﬁ“c%‘:;fgmc'mc "ou
T l!;oﬂ’ NUMBER 2. GOVY ACCESIION NOJ ). RECIPIENT'S CATALOG NUNMBER
chnical Note BN-98° /
Technical Note BN-983 [),/I‘ij, L10
4. TITLE (ang Subtitie) §. TYPL OF REPORT & PEMOD COVERED
THE FINITE ELEMENT METHOD FOR PARABOLIC EOUATIONS] Final-life of the contract
I. A POSTERIOR!I ERROR ESTIMATION
§. PERFPORNMING ORG. REPOART NUMBER

7. AUTHOR(Y) T. CONTRAST OR GRANT NUMBENY)
M. Bieterman and 1. Babu¥ka ONR N0O0O0O14-77~C-0623
. 3. PERFORMING ORGANIZATION NAME AND AOORESS T8. PROGANAM CLEMENT. PROJECT, TASK |
AREA 6 WORK UNIT NUMBENRS

Inst. for Physical Science & Technology
University of Maryland
Coliege Park, MD 20742

11, CONTROLLING OFFPICE NAME AND ADDRESS 12. AEPOAT DATE
Department of the Navy April 1982
Office of Naval Research 15. NUMBER OF PAGES
Arlington, VA 22217 69

14 MONITORING AGENCY NAME & ADORESS/! ditferent from Centrelling Ollige) 18. SEQURITY CL ASS. (of this report)

[T8e. OECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public re]ease:. distribution unlimited

17 CISTRIBUTION STATEMENT (of the ebetract entered in Block 20, If diflerent lrom Repert)

16. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse eide il y and § 1ty by Meck number)

zpjiuvncv (Continue on reverse side if necessary and ideniity by bleck number)
In this first of two papers, computable a posteriori estimates of the space
discretization error in the finite element method ot lines solution of
parabolic cquations are analyzed for time-independent space meshes.  The
effectivityv of the error estimator is related to conditions on the solution
regularity, mesh family tvpe, and asymptotic range for the mesh size. For
clarity the results are limited to a model problem in which pieccewise linear
clements in one space dimension are used. The results extend straightfor-
wardlv to svstems of equations and higher order clements in once space dimen- - |

DD . Si%, 1473 eoimion oF 1 wov 313 omsoLETE
5 N 0102-LF-014- 6601

SECURITY CLASBIFICATION OF THIS PAGK (When Dors Entered)




28. sion, while the higher dimensional case requires additional considera-
tions. The theory presented here provides the basis for the analysis
and adaptive construction of time-dependent space meshes, vhich is

: the subject of the second paper. Computational results show that the

' apprvoach is practically very ¢ffective and suggest that it can be used

for solving more general problems.

<

FEfC“Sﬂlﬂn Fer

- A
NTY o >
DTI; 7o
Unenne inca2d
Justificncicen ]

By .

_Dispribution/ o
Availability Codes
/Avail and/or

Dist Special




sl

THE FINITE ELEMENT METHOD FOR PARABOLIC EQUATIONS, ;
I. A POSTERIORI ERROR ESTIMATION

Technical Note BN-983

b ‘

y )

M. Bieterman '
and

I. BabuSka 2

1 Laboratory of Applied Studies
4 Division of Computer Research and Technology
National Institutes of Health
Bethesda, MD 20205

2 Institute for Physical Science and Technology
and Department of Mathematics
University of Maryland
College Park, MD 20742

The work of the second author was partially supported
by ONR Contract N0O0Q14-77-C-0623.




Abstract

In this first of two papers, computable a posteriori
estimates of the space discretization error in the finite
element method of lines solution of parabolic equations are
analyzed for time-independent space meshes. The effectivity
of the error estimator is related to conditions on the solu-
tion regularity, mesh family type, and asymptotic range for
the mesh size. For clarity the results are limited to a
model problem in which piecewise linear elements in one
space dimension are used. The results extend straight-
forwardly to systems of equations and higher order elements
in one space dimension, while the higher dimensional case
requires additional considerations. The theory presented
here provides the basis for the analysis and adaptive con-
struction of time-dependent space meshes, which is the sub-
ject of the second paper. Computational results show that
the approach is practically very effective and suggest that

it can be used for solving more general problems.




1. Introduction

In recent years interest has grown in the method of lines
(MOL) approach for the numerical solution of time-dependent i

partial differential equations (PDEs) arising in biology, rhe-

ology, structural and fluid mechanics, and many other fields.
In this approach a problem is first discretized in space, for {
example, by a Galerkin or difference method. This results in
a system of ordinary differential equations (ODEs) which can
be efficiently solved by one of the available variable-step,
variable-order ODE packages. This segmented approach is obvi-
ously practical, and modern ODE integrators are generally re-
liable in estimating and controlling the error due to the time
discretization. However, one is usually interested in the
total error, i.e. the error of the approximate solution with
respect to the exact solution of the original PDE. The advan-

tages of highly accurate ODE integrators are diminished if the

error due to the space discretization is large. Those avail-
able programs implementing both segments of the MOL approach
(cf. survey in [16]) generally have no facility to estimate
and control both components of the error.

Recently a MOL procedure, which we shall call the finite
element method of lineé (FEMOL), was proposed for the solution

of parabolic PDEs (cf. [1]). Piecewise linear finite elements

in one space dimension were employed in a model problem, which
consisted of a second order homogeneous PDE, with smooth and

compatible initial data. Using the theory and practice of a




posteriori error estimates developed for elliptic PﬁEs in
[23, £31, [4], and [5], an estimator for the space discretiza- :
tion error was constructed. This estimator and a novel adap-
tive time discretization scheme were utilized to estimate the ’
total error in the FEMOL in the case of time-independent space {
meshes.

We shall restrict our attention here to the space discre-

tization error in the FEMOL, i.e. the total error, assuming

WS AP

that the resulting ODE system can be solved exactly. In any
given application this of course cannot be accomplished, and
the effects of the errors in the ODEs must be taken into

account. The purpose of this paper is to completly isolate the

space component of the error and means of estimating it. By
keeping the analysis independent of the time discretization
scheme, none of the state of the art ODE solvers are excluded

a priori when dealing with the important question of how to

properly balance the two components of the error.
In this first of two papers, it is assumed that the space
mesh remains fixed throughout the time evolution of the problem.
Using piecewise linear elements in one space dimension, we consider
the model problem of a second order nonhomogeneous parabolic PDE, with
' initial data not necessarily smooth or compatible. For relatedresults

with higher order elements in the setting of coupled systems of

equations in one space dimension see [8].
The results given here are extended in a second paper [7]

to analyze means of estimating the space discretization error

ey eeme—. —_— st - i At




when the space mesh is allowed to change discontinuously in
time. Based upon these estimates, a procedure is given there
for the control of the space discretizaticn error by the adap-
tive construction of space meshes during the solution process.
This algorithm is then tested in some computational examples.

The effectivity of the space discretization error estima-
tor constructed in [1] depends on properties of the exact solu-
tion in the space-time domain and is asymptotic in nature. We
give sufficient conditions and a priori bounds on the asympto-
tic range for this estimator to work. These bounds are overly
pessimistic for any given problem, and we shall see in some
examples that the results are much better than the theory pre-
dicts. Under less restrictive conditions and for all mesh
partitions, it is also shown that a modification of our prin-
cipal error estimator can be expected to perform well. This
modification takes more fully into account tle case where an
exact solution has a strong time-dependence with respect to
the size of the mesh used.

This paper consists of the following sections. In section
2 notation, mathematical preliminaries, and the model problem
are introduced. In section 3 certain regularity classes are
defined and an accompanying theorem is proven, showing that
the model problem is well-posed. Based upon this proof and
result, in section 4 a priori estimates needed in section 5
are given. Our a posteriori error estimates are presented in

sections 5 and 6. Section 7 consists of the description of

e




computational procedures used and examples.

Many of the required function spaces, results, and tech-
niques used in sections?2-6 to prove our results are somewhat
technical. In order to facilitate a first reading of the
paper, we present here some basic notions and a sample of our
computational results. By then skipping directly to section
7, the reader should have a good overview of the main ideas
presented.

Let u = u(t,x) be the solution of the model problem

u, = f~Lu = f(t,x) +[a(x)ux]x -b(x)u; O0<x<l, t>0,
(1.1) (ult,x) = g(t,x); x = 0,1, t>0,
u(0,x) = uo(x); 0 < x< 1,

where a > 0, b = 0, uO, g, and f are given

functions.

The FEMOL solution of egs. (1.1) is accomplished by parti-
tioning the interval (0,1) according to
A(N) = {0 = Xg < X < vt o< Xy = 1} and determining the unique
function U = U(t,x), which is piecewise linear in =x and
smooth in t, and satisfies a weak, or integral form of egs.
(1.1). TFor each t, U 1is characterized by the vector of its

values {U(t,xj)} which is the solution of an N -1

j=1,N-1"
dimensional ODE system, assumed here to be exactly solvable.
In the computational examples, the ODE systems were solved by

using successively smaller time discretization error tolerances,




the process being terminated when all relevant quantities
experienced only insignificant changes in the time intervals
of interest.

For each t » 0 the goal is to estimate

1 2 1/2
(1.2) HeCt, O = {J a(x)ex(t,x)dx} R
0

where e = u - U 1is the space discretization
error.
In order to estimate [fe(t, )] , we define the local error

indicators {nj(t)}j=l,N by

2 x
[%.-x. .| 3
(.o nl = Al j p2(t,0dx; 153 s N,
12 a(—l:L——l) X5-1

1]

where the residual r(t,x) (Ut+LU-f)(t,x) is well-
defined and computable for each t > 0 on each sub-

interval (Xj-l’xj)’ given U.

The principal a posteriori error estimator E(-) is then

defined by

N \1/2
2
(1.4) E(t) = { nj(t)l H t > 0.

=1 J

To assess the performance of E(:), we define the effec-

tivity ratio

(1.5) o(t) = E(t)/llett, M; t > 0.

Py




E(:) is an effective estimator if there exists a reason-
able constant C (depending on the admissible solution class

for eqs. (1.1) and the admissible class of mesh partitions to
(N)

which A belongs, but not on the magnitude of the data
Uy f, or g) such that
(1.6) 1/6(t) = C; vt > 0.

Moreover, it is desirable that

(1.7 oe(t) - 1 as the partitions of (0,1) are refined.

In one of the examples of section 7, the exact solution of

eqs. (1.1) is taken to be

(1.8) u(t,x) = % + % tanh [2B(x-10t)]; B = 20,
which is a wave with approximate front width B-l that moves

in the positive x-direction at speed 10 (cf. figure 1(a),

(b),(c)). For each of various values of N, the FEMOL was

implemented in this example by defining the partition A(N)

according to xj = jJ/N; j = 0,N. The tables below illustrate
for various t the performance of E(t) as compared with the

relative error EREL(t), defined by

(1.9) Eppp,(t) = MeCt, HM/AMalt, i

.




TABLT 1. Ep_ (1)

NN 20 40 80 160
032 | L4325  .263%  .1308  .0649
.056 | .5697  .2u31  .1309  .0649
.060 | .6437  .2818  .1309  .06uLY
.088 | .3473  .2673  .1309  .08u49
TABLE 2. 0(t)

\E\N 20 40 80 160
.032 | 1.320 .995  .989 .99
.056 .776  1.076  .989  .996
.060 .806 .903  .988  .936
.088 | 1.685 .961  .987  .996
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Figure 1. Solution u(T,X) in Eq. (1.8) vs. X for various 7.

The last three columns of Table 1 illustrate for each t

the expected linear rate of convergence for |le(t, )ll. For

N = 20 the mesh used is not fine enough to resolve the wave-
front and the errors oscillate about the 50% mark.

The numbers in Table 2 clearly illustrate the effectivity

of estimating ||e(t,*)l] with E(t). While values for the

in (1.6) on the order of 10
none of the entries in

constant C or more would be

acceptable in many applications, for
~Table 2 1is such a pessimistic bound realized. We see that
or less error, the estimator E(-) differs

for about 13%
1%, a truly remarkable

from |je(-,+)]j by no more than about

result.
These and other computational results are discussed more
fully in section 7. We again mention that the estimator

E(-) can be used in an algorithm, where decisions concerning
modifications of the space mesh are made adaptively during the

solution process. Provided that proper constraints are imposed,




this then leads to an implementation of the FEMOL which is
robust enough to adaptively modify meshes in the case of local-

ized activity, such as for the travelling wave above, and yet

———

is still efficient enough to handle problems where little or

no mesh modification is necessary.

b Nmas o
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2. Mathematical Preliminaries and the Model Problem

Throughout this paper we shall use the convention that
the variables i, 3j, ¢, m, N, p, and g take only
integer values,

Let J be a bounded open interval in IRl, J its clo-
sure, and Y be an arbitrary Hilbert space. We denote bty
CO(E;V) those V-valued functions which are continuous on J,
C*(J;V) the subset of infinitely differentiable functions on
J for which all derivatives have continuous extensions on J,
and CS(J;V) those functions in C~(J;V) with compact sup-
port in J. When V = IRl we suppress V and write CO(E),
cT (I, Ccg(d.

Let I = (0,1) be the unit open interval in IR% T its
closure, and [0,T) be a bounded half open interval in IRl.

For o.,4 € C (I), set

<¢H¥Y> = J s (x)y(x)dx and ”¢”S = <d0>.
I

For each i =2 0 the Sobolev space Hl{Hé} is the completion

of Cm(f){CE(I)} with respect to the norm

2 i P, |2
lolif = 3 “%—;,“ ,
p=0 0

s

and for each real s = 0, H with norm H-HS is a Hilbert

space which is defined by interpolation as in [15].

Let a and b be sufficiently smooth functions on I

for which
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(2.1) 0 <cas<alx) sa<ew
_ ¥x € I.
(2.2) 0 =Db(x) =b <« =

For u,v € Hé we define the bilinear form
(2.3) B(u,v) = <au,v_> + <bu,v>.

By (2.1) and (2.2) 3 positive constants C_,C such

1°72
that
2 2 1
< |

(2.4) C2Hwnl < B(w,w) = Cle,!l Yw € HO’
and HwHé = B(w,w) <defines a norm equivalent to H'Hl on

1
HO.

The operator [ defined by
Lu = -(aux)x + bu

1
0

adjoint operator induced by B. Using spectral rer—esentations

with domain ©O(L) = H2 NH is the unique positive self-

(cf. [9], [13], [14]) we can define fractional powers of L.

Results in [11] show that for a = 0, a/2 # integer +%

La/2

e < a . p = .
(2.5) D( ) = {v e H :L V(X)‘x=0,l 03

Vp satisfying 0 < p < a/2 - 1/u}

and, as in (2.4),

L2 s equivalent to ‘I,

a/2).

(2.6) the spectral norm | ”0

on D(L
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Let P be a family of mesh partitions of I and

A = {0 = Xy < Xl < ' o< xN(A) =1} € P.
For j =1, N(A) we write
Ij = (xj_l,xj), hj = xj - xj-l’ and
h(a) = min hj . h(a) = max h.
1=<j=<N(a) 1<j=N(a)

P is said to be a «k(X)-regular family if 3 constants x 2

A > 0 such that

1,

(2.7) n(a) = A () va € P.
For v ¢ HO, w o€ Hé, j = 1,N(A), and ¥ € CO(Tj) we shall
write
el = [ vPooax,
T3 I.
J
”w”é 1. ° J [a(x)wz(x) + b(x)wz(x)]dx, and
s j I X

3
x._l+x.
1

For each & € P, S(A) < HO is the subset of functions

-
1]

whose restrictions to any Ij are linear. The operators

1
0,

A A
or F1» La
S(4) are defined by

L S(4), respectively, to

P mapping HO, H
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( <P8v—v,¢> = 0
(2.8) (B(PIv-v,8) = 0 Ve € S(A).
L <L,v,¢> = B(v,¢)

L is a positive self-adjoint operator on S(4) satisfy-

A
ing
(2.9) L,(PAwy = Plaw Yu € D(L)
At 0 ’

By (2.1) and (2.2) 3 a positive constant C such that

Vé € S(4)
-1 -1 2

(2.10) ly=elly = clrymell, = colielly,

and if P is «x(M)-regular

< -K
(2.11) ULA¢”O < (C/M)h (A)H¢HE.

The following lemma is well-known (cf. [6, Chap. u4]).

Lemma 2.1. There exists a positive constant C such

that for each A € P

(2.12) lz-phovll, = cn Sadlivilgy  ve € p® P,
0sssl1sos2,
(2.13) Icz-ppoviiy = cn¥carlivil ;s vo € 0%/,

We shall consider the following model problem.

0 =0 =2, o# 1/2.

it
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"

g% u{t,x) + Lu(t,x) flt,x); t,x € (0,T) x I,

(2.14%) ‘ u(t,0) = 0 u(t,1); t € (0,T),

L u(0,x)

uo(x); x € I,

The data Uy and f are such that the solution .
u(;uo,f) of eqs. (2.14) resides in a certain regularity class
H, which will be specified in section 3.

The weak form of egs. (2.1%) is: find u:(0,T) - Hg
satisfying i

<u (£),9> +B(u(E),8) = <E(t),é>;  VE,é € (0,T) x HY, ’
(2.1%)

u(0)

UO.

For each A € P, the FEMOL solution UA : [0,T) =+ S(&)

is defined by

<U€(t),¢> +BUA(E) ,8) = <E(1),8>; Yr,é € (0,T) X S(A),
(2.16)

vdeoy = US € S(8),

where US is chosen to approximate ug and is specified in

section 4. Egs. (2.16) may be rewritten as

A ) - A )
Us(e) + Lut(e) = PofCe); t € (0,1),
(2.17)
UA(O) = Uéa

and for reasonable data Ugs f are equivalent to a uniquely

solvable N(A4) - 1 dimensional ODE initial value problem.

_— Fo ., A
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The following discrete smoothing property can easily be

verified (cf. [81]).

Lemma 2.2. Let UB = uB(; UA,O) denote the solution of

0. Then 3 a positive constant C

1]

eqs. (2.17) with ng

such that for 1 =0 or 1

< Ct-(i+2j)/2

I o8
(2.18) 25 (o) dlys vt >0, 3= 0.

Remark. When there is no threat of confusion, we shall

often drop A when writing S, h, PO, Pl’ U, and UO'

Our work requires the use of the nonisotropic Sobolev
spaces st’s, which we now define. For nonnegative ¢ and

m, let HZ(J;Hm) be the completion of C (J;H™) with res-

pect to the norm

2 £ 2
(llull ) b j || o Lce. ) |2 a,
uf (g™ j=0
and define sz’z(J) z HO(J;sz) n HZ(J;HO) with norm
2 2 2
J J
g, ) (uuu )+ (nun 0, )
< 28,8 1’ (12%) n? %)
25 s . J
For each real s = 0 the space (J) with norm H-st 5

is a Hilbert space which is defined by interpolation as in
[15]. We state in convenient forms some well-known trace and

embedding results.
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Theorem 2.1. (cf. [15, Thms. 1.2.3, 1.4.1, Prop. 4.2.31)

2s,s

Let s =20, v €H (J), and j satisfy 0 = j

1A

S.

] 2(s-3), (5-3)

Then %Ejv € H (J) and 3 a positive constant C

such that

3
3 J < J
“S??Vuzcs-j>,(s-j) = Clvlyg s -

Theorem 2.2. (cf. [15, Thms. 1.3.1, 1.4.2])

Let s > 1/2, v € H2%*S(J), and 3§ € [0,s-1/2). Then
3y e cOTu?(emItl/2),

that

and 3 a positive constant C such

sup".a_J_jv(t,-)” . < cvid. .
rey ot 2(s-3-1/2) 25,s

Theorem 2.3. (cf. [15, Thm. 4.2.1, Prop. 4.2.2])
2s,s

Let s > 3/4, v € H (J), t* ¢J, and j and p

satisfy 0 = j + p/2 < s - 3/4. Then

j P P,J
9_.GL?v(t x)‘ )‘ = 2 <é sv(t x)l )
L] ‘—J L) .
ati\ox x=0,1/t=t* ax\at t=t#/1x=0,1

We conclude this section by noting a useful partial ex-

tension of Lemma 2.1.

Lemma 2.3. There exists a positive constant C such that

for each 4 € P

3
-pdy2 o J . PATIRTE 0, .4l

p=3j+eg/2, j=20, 1lso= 2.

.y Dbacn it i .

aa




s < r~|‘
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o/2 c/2

Proof. Set V = HO(J3;0(L°%)). Since CT(T;D(L7" )

is dense in the Hilbert space V, I - Pi can be continuously

extended to an operator mapping V to HO’O(J). By (2.12) we

T

have

A iatnsition -

. A J o J
(2.19) H(I-Pw] < Ch (A)jwl] 3 Yw € V.
17770,0 18co(L° %y

o

It follows from the assumptions of the lemma, (2.5), and Thms.
]
- 27,
2.1-2.3 that w = atJv e V.
The application of (2.6) and Thm. 2.1 in (2.19) completes

the proof.
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3. Parabolic Regularity

Throughout the remainder of this paper, « and 3 denote
arbitrary but fixed real numbers related to the data in egs.

(2.14) and satisfy
(3.1) a>1, -1 =8 =a B,a,a/2 # 1integer + 1/2.

For real o, [J] denotes the integral part of o and

s'lq

L'3ap =0 for q < p.

We begin by defining for v ¢ HE+1, g € HG’Q/Z(O,T)

the p-order compatibility measure

[p/2+1/4] 2
(3.2) M%R(v,g) = 3 7 Lo ¢+ §IG-1P LR
X:O’l 8:0 P=l
3P1

which by Thms. 2.1 - 2.3 is well-defined.
The following facts concerning solutions u(;¢,f) of

eqs. (2.14) with initial data ¢ and right hand side I are

well-known.

Theorem 3.1. (Existence; cf. [15, Thm. 3.4.1])

Let o ¢ H0, £ ¢ H2°%(0,T). Then eqs. (2.14) have a

unique solution u(;¢,f) ¢ HO«O,T);H%).

Theorem 3.2. (Regularity; cf.[15, Thme 4.53, 4.62])

+
Let o ¢ H*'L, £ ¢ yaa/?

(6,T), and MER(9,f) - 0.

Ha+2,(a+2)/2(0,T) and 3 a positive

Then u{;¢,f) ¢

---—---—-—------!IlHllllllll-l!HI'!!!!'Il!--u-mu--n-n-uu---muav:::r—T.‘!
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constant C such that

(0,T)

- (0,T)
a+2,(a+2)/2 ~

hal a,a/2

Cllipl o * I£! }.

Lemma 3.1. (cf. [13, p. 4891, [14], and (2.5))

Let f = 0 and ¢ ¢ D(L(B+l)/2)). Then Yt > 0
u(t;o,0) ¢ D(L(a+l)/z) and 3 a positive constant C such
that

| . -(a+l)/2
luCtse, 000 ,, = Ct lollg -

We therefore have

Theorem 3.3. (Parabolic Smoothing)

Let ¢, u(39,0) be as in Lemma 3.1 and 0 < T, < T.
Then

at+2,(a+2)/2

(3.3) wu(5¢,0) € H (T,,T) and 3 a positive

constant <€ such that

(T*’T) < "(G.+l)/2” ”

(3.4) MaGo,00 4o (qe2y/2 = C Ta oligyy-

(a+1)/2

Proof. By Lemma 3.1 u(T,;¢,0) € D(L ), which

is equivalent to MER(u(T*;w,O),0)= 0. By applying Thm. 3.2
to the interval (T,,T) we have (3.3) and

(T, ,T)

Hu(;U(T*;waO)’O)”a+2,(a+2)/2 =

C”U(T*;‘DQO)HQ.F]_

by Lemma 3.1 < C T;(“+l)/2n¢uﬁ+l.

i
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We now define certain regularity classes for data and
solutions of eqs. (2.14%) in order to combine Thms. 3.2, 3.3

for use in Section 4. Set

a,al/?2 CR

(3.5) D%P (0,T) = {v,gcuP 'l xH ;

(0,T):M " (v,g) = 0}.

For wv,g ¢ p*°° (0,T) and 0 =<T, < T set

(0,

(3.6) C‘a(a,T*,T,V,g) = ”V”a+l + ”g”a,a/Z’

and for wv,g € DQ’B(D,T) with B <a and 0 < T, < T set

—(a+l)/2)(M§R

(3.7) T_(B,T,,T,v,g) = (1+T, (0,g) + ”VHB+1)

(0,T
¥ ”g”a,a/%'

For 0 =T, < T define

a+2,(a+2)/2

(3.8) HG’B(T*,T) = {u€H (T, sT):u = ulsv,g)

solves (2.14) for some v,g é'Da’s(O,T)},
and for u(;v,g) ¢ HG’B(T*,T) set
(3.9) C (B,Ty,Tou) = T (B,Ty,T,v,8).
By properly decomposing given initial dita we shall show

Theorem 3.4. Let 0 =T, < T and uy,f e D*°% (o,T),

w

where B = a if T, = 0. Then eqs. (2.14) have a unique
solution u(;uo,f) € HG’B(T*,T) and 3 a positive constant

C such that

——— s . o ——— e e
——vy e R




e e 6w 4 —

(3.10) wuq(T*’T) = C T (B,TynThug,f) = € C (3T, T, ).
' "Ea+2,(a*2)/2

t

Remark. The deczomposition used in the proof of Thm.
3.4 will be used to demonstrate the a pricri estimates of

Section 4.

Proof. The outline of the proof is as follows. Through

a sequence of elliptic boundary value problems we construct

functions ué and ug with the following properties:
1 2
(3.11) Uy + Uy T Uy
+
(3.12) ul e H° 1 and MCR(ul,f) = 0,
0 a 0
(3.13) ul e p(L(F¥LY/2y
and for which 3 positive constants C,, C2 such that
1 HuO“a+l’ if B = a,
( y gl
(3.1u4) JuOJa+l < Cl -
Ma (0,f), 1if B < a,
) 2, 0, if B = a,
(3.1 ”uOJB+l < C2 cx .
Ma (0,f) + ”uO=B+l’ if 8 < a.

By linearity the solution u(;uo,f) (whose existence is

gizen by Thm. 3.1) can be decomposed as




It then follows by Thms.
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L«

2
Os—)n ua”

= u(sju

3.2, 3.3, (3.86)-(3.9)

2

= u(;ua,O).

, (2.1¢), anZz

“he triangle inequality that u ¢ Hc’;(?*,T) and
G ”’(L*,x) < iuly0,T) . Vuzﬁ(x"’l)
T T2, (av2)/2 T Ta+2,(2+2)/2 T a2, (2+2) /2
< By l;| I:;H(O,T) + "(J+1>/2
- C{JuO'c+l ¥ "!3,2/2 Ta
g 2
i
”u013+l}
; (0,T
i i L e ) . 3 - ~
Tuglyey * 12 a,a728 P
by (3.14) and (3.18) =C
(1+Tﬁ-(a+l)/2)MSR(0,f)-+Tﬁ'(c+l)/2
den (0,T) .
JEn ? . ! ot
”u0H5+l +J*”a,a/2’ i B <o,
by (3.8)-(3.9) = C_(B,Ty,T,w.
It remains therefore to construct ug and ug satisfying
(3.11)-(3.15).
, . 1 2
If 3 = a, set uo = uo and ugy = 0, and
(3.18)
: oL = 2 -
if B < a, set JO = Wa and ug = uo Va’
where with i = (a/2 + 1/4] 2 0, ¢_ = z., and the sequence

t25t5-01,4

2.1

= 0 and for J = 0,1 =z

is defined by :

solves
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sz(x) = zj_l(x) yx € I,

(3.19)
sP 1

M 1yP Limi-p
"2'(—1) L atp.

p=1

zi(x) 1 £(0,x)5 x = 0,1,

By Thms. 2.1+<2.3 and elliptic regularity theory we have that

+ .
v, o® z, ¢ H° 1 N 0(L) and 3 a positive constant C such
that
i-1
(3.20) v i o= ¢ I [zl = ¢ uSRo,0.
x=0,1 j=0 3

Properties (3.11)-(3.18) are easily verified, thus completing
the proof of Thm. 3.H4.

We now define some subclasses of HG’B(T*,T) which are
needed in Section &.

For 51 > 0 set

(3.21) M1, D) = (ueHP(T,, T u satisfies I(5)1,

51

and for 61 > 0, 52 >0, a >3 set
; Q2

(3.22) HPR (1) = qu e HPP(T.,D):u satisfies II(5.)},
51,52 = 51 W 2

where the properties I(él) and II(52) are defined as

follows.

We say that u ¢ HQ’B(T*,T) satisfies I(s;) if

A
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(3.23)  for each t € [T,,T], flu (t,")!; >0 and
C (BT, Tyu)
SUP_ L To_Te T, < P
telT,,T] "HYxx T g

We say that u ¢ HG’S(T*,T) satisfies I1(5,) if

(3.24) for each t € [T,,T] 3 an open interval I, ¢ I

“t
such that
(3.28) g (t,w) = inf {lu(t,0] - 1117?50 and
x€l
t
gU(t,u)
(3.26) sup {——T¥——T < 62, where
telT,,TIEL T2 Y
(3.27) gU(t,u) = ig§{]uxx(t’X)‘+ }uxxx(t,x)l}.

Remarks. Ffrom Thms. 2.2, 3.4, and the Sobolev Embedding
Theorem we have that (3.23)-(3.27) are well-defined, since
for a > 1, u € HG’B(T*,T) = u € CO([T*,T];HZ), and for

@ >3, ueHPer,,T) = u € clr,,T1xT). Membership

XXX
in these subclasses does not depend on absolute magnitude.

For u ¢€ Hg’B{Hg’@é }, it follows that Cu ¢ Hg’B{Hg’BG}
1 °10% 1 %1%

for any nonzero constant C and the same 51{6l and 62}.
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4. A Priori Estimates

Let u(t) = u(t;uo,f) and U(t) = UA(t;UL,Péf) denote

the solutions of eqs. (2.14) and (2.17), respectively. Define

e(t) = u(t) - Ut),
(4.1) o(t) = Pjult) - ult),
Te(t) =N Pyult) - U(t).

In order to analyze the a posteriori error estimater in
Section 5 tOQ‘ﬁfmegindcpcndent space meshes, we require esti-
x .
%

mates of the form

91
He(*c)llE = 0(h &)
(4.2) as h > 0; ¢
)
Het(t)HO-O(h )

>l,0’ >0,

with similar estimates needed with g, > 1 for time-dependent
meshes. Estimates of this type for Galerkin approximations of
time~dependent equations have been obtained by many authors
(cf. [9]1, [101, [17], [18]), wusually as a means of bounding
some norm of %%5e for j z 0, and often where the regularity
of the exact solution u is given implicitly by norms of u
appearing in thé estimates. To clarify the connection with

section 5, throughout this section we shall assume for

simplicity that

(4.3) P is a «x(\) - regular mesh family,

e
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and that our choice of discrete initial data is fixed as

A .
Pluo; A € P, 1if U € D(L),

{(u4.4) U =

Péuo; A€ P, if u_ ¢ D(L).

0

In a manner similar to that used in [3], other choices

A
Q

formly as t ~ 0 for our smooth data estimates valid on

for U can be handled, but we require (4.2) to hold uni-

[0,T). Note that for ug € D(L), UgCo) = Péut(O) by (2.9).

The main result of this section is

Theorem 4.1. Let a,B satisfy (3.1) and a = Uu.

Assume (4.3) and (4.4), let 0 =T, < T, and u(;uo,f) €
HG’B(T*,T). Then 3 a pesitive constant C (depending on
the functions a and b, constants A and T, but not

on T,, u,, £, or u) such that for each &4 € P

0’

c

(4.5) f0(t); = Ch “(A)C_(B,T,,T,u)

IA

; v t e [T,,T),

2
Ch “(8)C_(B,Ty,T,u)

1A

(4.6) Het(t)HO

where
(4.7 o, = min(a,2),

a-K , 1f a = 2,
(4.8) o, =

max(2-x,a-2), if 2 < a = &4,
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1 2
= +
0 uo uO be the

given in (3.18). Then

Proof. TFor each ¢ and £, 1let u

a,3 -dependent decomposition of u

0
1 2 3 )
u=u +u +u solves egs. (2.14), where
(
ul = u(;u%,f),
(4.9) < u2 = u(;ug,o),
u3 = 0.

Similarly, we decompose the solution U of egs. (2.17) as

U = Ul + U2 + U3, where

1l Ll R 1
R ST JES PR )
2 2 2 2
(4.10) < Ut = UGUE0; Uy = Pug,
3 3 3 ol 2
KIJ - U(,UO’O), UO - UO UO Uo-
We then have
3 m m m m
e(t) = ) e (t); e (t) = u(t) - U (1), m=1,2,3,
m=1
3 m m m m
plt) = § o (t); o (t) = Plut(t) - u(t),
m=1
3 m m m m
g{t) = § 8 (t); 8 (t) = Piu(t) - U (t).

m=1

Using the t-independence of the operators L, LA and

subtracting eqs. (2.16) from egqs. (2.15) we get
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e e ek alt o o

<62(t),®> + B(63(t),p)

0; V¥ t,p € (0,T) x S,

(4.11) ;
30y = -ul, :
2 a2 2
(4.12) B(e“(1),0) = B8 (1),9) = —<e (t)e>3 ¥ t,p € (0,T) xS,
i
$*+1 33 4 j*+1 1 |
< 3§¥§1e () 0> + B(s;jel(t),w) :<'ggfﬁxo (t),9>3 j
[
(4.13) < V t,p € (0,T) x S, {
sty = a, 20 or 1,
1 i 1 i
| 830 = (B -Pui(0). q

The applications of discrete smoothing Lemma 2.2, spectral i

representations, and the technique of energy estimates in

i

eqs. (4.11), (u.12), and (4.13), respectively, enable us to
demonstrate (4.5) and (4.6) for each of the three components.

The triangle inequality then completes the proof of the

theorem.

We first note that the choice of UO in (4.4) and the

decompositions (3.18), (4.9), and (4.10) show that for

B = a, u2 = u3 = U2 = U3 = 0. It therefore suffices to

show (4.5) and (4.6) for the m = 2,3 components only for

Specifically, we shall show .that for t =2 T, > 0 and
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(4.14) 3oy,
AN
) = carrp O el
(4.15) Het(t)ﬂo
1 a2 - “1 —(a*1) /2,y 2
(4.16) Te“CeXliy = Ch “(1+T, Y lugilys
2, 01« . -(e+1) /2,y 2
- | ! << |
(4.17) Je_t(’t):ro < Ch (l*‘T* )“UOIIOs

and for 0 =t < T and B = «

1 - °1, 1,(0,T)
(4.18) temcedlly = ¢ h THuTllgyd (aeays2,
(4.19) fefcoll, = ¢ hozﬂulW(O’T)
’ t o - T Na+2,(at+2) /2,

It follows from (3.18), (3.20), (u4.u4), (4.7), (4.8), (u.1i0),
Lemma 2.1, and the triangle inequality that for £ < 1l < a

(i.e. ug ¢ OCL))

) o)

3 _ . 2 -~ 1 2, .
(4.20) Hugly = WP =P Oy ily = Cholly Il , < Ceminth 7,0 O
¥CReo, £,
a
and if 1 2B < a (i.e. U, € D(L))
3 - | - ' < - 2 :
(4.21) ”Uo”o = J(Pl—Po)u0+ (PO Pl)waﬂo = Cn {Hu012+ ”Wa“z}

o o
s Comin(h Tyn %) e {llughg,y + M5R0,0)).

1 Ha+2,(a+2)/2

Also, since u™ ¢ (6,T) for 3 = a, we have by

Thm. 3.2 that




2

(&)

, 1,(0,T) o - 1 ve (0, T)
(4.22) } Ja+5,(:+2)/2 > N+l * f‘3,7’1/2

}.

1

0
and ug, and the definition (3.93) of C1 in (4.14)-(4.19),

Using (4.20)-(u4.22), the estimates (2.14) for u

we see that the demonstration of (4.1u4)-(4.19) will complete

the proof of Thm. 4.1,

We shall make use of the following simple lemma.

Lemma 4.1. Let 0 = vy, = ¥y and 0 < T, = t.

=Y -Y
Then t L s1+T, 2

We first demonstrate (4.14) and (4.15). By (4.9),
(4.10), eqs. (4.11), and Lemmas 2.2 and 4.1 we have that for

a>1 and t 2T, >0

3
(4.23) s (t)HE

(1]

ol = ¢ Y2l s cawrr et

%
3
3,090 - 12 113 - -1,..3; -(a+1)/2
(4.24) e (D)lly = gz U (0)llg = C t 7llugl, = CCL+T, )
3

which are (4.14) and (4.15).

Because e2 satisfies eqs. (4.12) and U2 = P u2

0 0-0’
spectral representations may be applied to obtain (4.16)
and (4.17). A simple interpolation argument leads to the

following slight variation of [3, Thm. 3.11].
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Theorem 4.2. There exists a positive constant C such

that for j 20, 0 < s =2, and t =T, > 0

J
(4.25) ui_.ez(t)no

o ch¥rT

1A

S i

uzﬁ
0"0"
It is easily verified in (4.8) that

o =

{ a-1¢€ (0,2), 1if 2 € (1,3),
2

2, if a € (3,4].

The application of (4.25) with j =1 and s = a-1

or 2 yields

e~1 . -(a+ld)/2, 2, .
Ch T, Tugllys

tA

(4.26) Hei(t)HO if 1 < a <« 3, and

2.\, 2 =22, . .
(4.27) jle ()1, = C h" T, Huglys if 3 <«

A

A
=

The estimate (4.17) then follows by applying Lemma 4.1.

To show (4.16) we set ¢ = 92 = pz + e2 in eq. (4.12)

and get for t = T, > 0 and any s € [0,2], s # 1/2

Hez(t)ﬂé - | < ei(t), 02ty + e2(t)>]

by the triangle inequality, (4.l1l), and Lemma 2.1
2 Sy..2 .2
< Het(t)HO{C h7{u (t)HS+ e (t)HO}

by Lemma 3.1 and Thm. 4.2

and hence

IA

C hZS t-(s+l)nu2!2

O'O’

-

PPy 'y
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) 2 i <
(4.28) ] (t)hE < Ch olp-

Setting s = g, F min(a,2) for 1 < a = 4 and using
Lemma 4.1 we get (4.16).

We proceed to demonstrate (4.18) and (4.19) directly 1
via energy estimates. These results can also be obtained i
for some, but not all a ¢ (1,4] satisfying (3.1) by
applying Thms. 2.1, 2.2, and results given in [17] in /

arguments similar to (4.25)-(u4,28).

Setting o = 282(5) in egs. (4.13) for 3j = 0 and

0 < s =t«<T, we get

0 AL 2 1 1 1 1

1 I -
(4.29) 2“85(s)n0 + 2B(87(s), es(s)) = 2<ps(s),es(s)>.
Using the t-independence of the symmetric form B and the
fact that 61(0) = 0, integration of eq. (#.29) on (0,t)
followed by the application of the Cauchy-Schwarz inequality

yields

1A
N

t
(4.30) Hel(t)Hé f H(I-Pl)ui(s)ﬂz ds,

0 0

from which we obtain

1A

l”(O,T).

1
(4.31) e~ Ce)lig t'0,0

CH(I-Pl)u

1 a+2,(a+2)/2

For 1<a <2, u' ¢H (0,T) N HO((O,T);Hé)

and so by Lemma 2.3 and (u4.7)
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(0,T)

1 - °1, 1
(14.32) ”6 (t)”E - c h ”u HG,+2,(G.+2)/2 2

which is (4.18) for 1l < c¢ = 2. The result (u4.18) for
2 <a =4 follows trivially.
It remains to demonstrate (4.18). For 1 < a = 4,

by (2.9) and (4.10) we have that for 0 = t < T

(4.33) ef(t) = erl(t) + ef’(1), where
11 3 1

(4.34) e: (t) = (I-Po)ut(t), and

(4.35) eiz(t) : LAel(t).

By Lemma 2.1, Thm. 2.2, and «k = 1, we have that for

l<a=2, at@ 3/2

(4.36) Jel'(t)i, = ¢ ®7C sup lug¢sd,_, = ¢ n®7"

s€[0,T] 1
a+2,(at2)/2,

and similarly for 2 < a < 4 with h%®™° replaced by n2-k,

Ry (2.11) and (4.18) we also have that for 1 < a = 4

V12,00 L 1 - -k .1 - 917K
(4.37) Let (t)JU = HLAB (t)”O < Ch e (t)“E = Ch

”ul”(O,T)
a+2,(a+2)/2.

1
By the triangle inequality and the definition (4.8} of Oy
we see that to complete the proof of (4.19), it suffices to

show
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a—QHulH(O,T)

g1 0o A
(4.38) }et(t).o = C h Le3 (a+2) /2 for 2 < a

IA
ey

. . . 1 _ 1 1
We have that et(t) = (I-Pl)ut(t) + et(t)'

It follows as in (4.36) that

i l B < 0—2” l;(O,T)
(4.39) l(I—Pl)ut(t)hO = Ch g Ua+2,(a+2)/2'

Setting o = 292(3) in egs. (4.13) for j = 1 and

0 < s =t<T, we get

d 41 42 1
ds”es(S)‘O

(4.40) 2<0” (s}, el(s)>.
ss s

+ 206t (s)
S

1 ro

Integration of (4.40) on (0,t) followed by the use of the
Cauchy-Schwarz inequality yields

t
0

1

ialoiyi2 o bl .2 2
(4.41) Wet(L)nO < Het(O)HO + C j H(I—Pl)uss(s)Ho ds.

. 1 1
Using et(O) = (Pl-PO)ut(O), we get

1aloyg o Loavy 41 1
(4.42) e (el = CLICP =DIur(0) iy + (I-P Ui ()] +
1 ,(0,T)

H(I-Pl)utt 0.0 }.

Using Lemmas 2.1, 2.3, and Thm. 2.2 we get from (4.42) that

a-2,.1,(0,T)

Tu “a+2,(a+2)/2

(4.143) uet<t>n0 < Cch for 2 < a < .

The proof of (4.38) and Thm. 4.1 is then completed by using

(4.39), (4.43), and the triangle inequality.
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Remarks. The follewing consequences Thm., 4.1 are
relevant to the estimates in section 5. Define the function
K by
(a+l)/2; 1 < =2 = 2,
(4. 4u) k(a) = 3/2 3 2 < a s 3,

g For fixed a ¢ (1,4] and « € [1,k(a)) set

K(a)-x

(4.45) pik,a) = 5

It can be verified from the result of Thm. 4.1 that 3 a
positive constant C such that for each &4 ¢ P and all

t e [T,I)

(5.48) BT (TaCe)ip + e (D))

(4.47) h"'(m)ile(t)ﬂE

s ¢ n?H(ae_(8,7,,7,u).
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5. A Posteriori Error Estimates

All notation used in Section & is adopted throughout

. . - . q
this secticn. The solution classes H:’”(T*,T) and
]
a.s . . o =
HooW . (T,,T) are as defined in (2.21) - (3.27).
..l,vz

We begin by listing for easy reference the assumptions

Dalcth,

concerning solution regularity, mesh familv type, and

discrete initial data choice which will lead to our results.

u € HG’E(T*,T); 0 =T, < T, a and B satisfy
(5.1) (3.1) and a £ 4. Tor A € P, Ug is chosen according

o (4.4),

u € Hg’B(T*,T); 5, > 0. P is a x(\)-regular
(5.2) 1
mesh family.

(5.3) ueHP (T..TY, «>3, 5 >0, &,> 0.
8455 “ 1 2
1272

(5.u) k € [1,<(a)); k(<) defined as in (4.uu),

Whenever they appear, unless otherwise specified

(5.5) C,Cl,Cz, etc. denote positive generic constants which
depend on the functions a and b, constants X and
T, but not on T*,a,B,Gl,Gz,u,U, or the data Uy

and ¢£.

We now define certain concepts needed in our a posteriori

analysis which are related to those developed for elliptic




boundary valu

For 0 =

(5.8) g:
(5.7) b
We defin

5.8 (t
( ) n]( s

and the asscc

(5.9) ¢

By (5.7)

(5.10) L%t

and therefore
Let ¢ ¢
(5.7). We sa

estimator for
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e problems in [2], [3], [u4], and [5].

T, < T let
s - g® e clar,,m; 8%
a - o8 e cOrr,,my; sca))

e the local indicators

h.
A A _ A ) .
g ,ﬁ ) = ———jw? ”Lé (t) - g (t)l|0 I-’
(l2aj) 73

t ¢ [T,,T), 1 =3 = N(a),

iated estimater

N(A)
t,gA,cA) = z n?(t,gA,éA) l/2;
=1 )
t e [T,,T).
- A A
LX) = —ax(x)éx(t,x) + b(x)¥(t,x);

t,x € [T,,T) x Ij, 1 =3 =2 N,

(5.8) and (5.9) are well-defined.
CO([T*,T); Hé) and g,¢ be as in (5.6) and
y that a quantity E(+,g,¢) 1is an upper

e - ¢HE on [T,,T) if 3 positive constants
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E
Cl,CQ,h such that for 4 € P with h(a) = Clh* and all
t € [T,,T)
A & b
(5.11) NeCt) - ¢ (t)HE < C, E(t,g ,9 ),

where Cl and C, are as in (5.5) and h* depends in
general on the mesh family P{i.e.g. on «} and on the class
in which % resides {i.e.g. on a,B,5l,52}.

If under the same hypotheses 3 a constant o0 > 0 such

that
A _ A A o)
(5.12) le(t) - ¢ (t)HE = E(t,g7,¢ )(1+0(h™)) as h = 0,

where the constant in the O-term is as in (5.5), then we

say that E(-,g,¢) 1is an asymptotically exact estimator

for (¢ - ¢NE on ([T,,T).

Let u and U be the solutions of egs.(2.14) and
(2.17). We take as our primary estimator for the error
Ilu--U!IE the quantity E(-,f-—Ut,U), defined according
to (5.8) and (5.9). The principal results in this section

are the following two theorems.

Theorem 5.1. Assume (5.1), (5.2), (5.,4), and let

p = pul(k,a) be as defined in (4.45). Then E(',f-Ut,U) is

. -1/
an upper estimator for Hu-UHE on I[T,,T), with h* = Sll L,
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Theorem 5.2. Assume (5.1) - (5.4) and let 4 be as

defined in (4.45). Then E(-,f-Ut,U) is an asymptotically
exact estimator for Hu-UHE on ([T,,T), with

-1/u —l/u)

h#* = m1n(6l »65 and o = u.

E(',f-Ut,U) is based upon local, computable residuals
and can therefore be used to monitor and control the space
discretization error in an adaptive FEMOL procedure. While
h* may be quite small, its existence indicates that
E(',f-Ut,U) will perform well as an estimator for a given
class of data, and not be overly sensitive to changes in solution
behavior during the time evolution of a problem.

The proof of Thms. 5.1, 5.2 is based upon interpreting
ut(t) as given data, egs. (2.14) as a continuous, one-
parameter (t) family of elliptic boundary value problems:

For each t € [T,,T), find wu(t) € D(L) satisfying
(5.13) Lu(t) = f(t) ~ ut(t),

and employing the error [lp(t)f; and estimator E(t,f -u,,Pju)

associated with (5.13). E(',f-ut,Plu) is defined according

to (5.8) and (5.9) and is not computable, and HQHE is not

of primary interest, but up to higher order terms in h we

have E(‘,f-—ut,Plu) ~ E(-,f-—Ut,U) and HONE ~ HeHE.
Specifically, the proofs of Thms. 5.1 and 5.2 follow

from the application of Thm. %.1 and the demonstration of

the following sequence of lemmas.

o g . TR



Lo
Lemma 5.1. There exists a positive constant C such
that for each 4 € P and all t € [T,,T)

A
IE(t,f-Ut,UA) - E(t,f-ut,p§u>1 S Ch(a) e (Ol + fle (O 4}

Lemma 5.2. Assume (5.1). Then E(°,f-ut,Plu) is an

upper estimator for HpHE on [T,,T), with h#* = 1,

Lemma 5.3. Assume (5.1), (5.2), and the result of
Lemma 5.2. Then 3 a positive constant C such that for

each A € P and all t € [T,,T)

K
A Ch™ (A
ECt,f-u,,Plu) 2 -—gz—l C_(B,T4,Tou) .
Lemma 5.4. Assume (5.1) - (5.4). Then E(',f—ut,Plu)
is an asymptotically exact estimator for oz on [T,,T),

with h* =5;l/u, £ defined as in (4.45), and o = .

Before proving Lemmas 5.1 - 5.4, we show that the
result of Thm. 5.1 follows from the validity of hypotheses
(5.1), (5.2), (5.4), and the results of Lemmas 5.1, 5.2,
5.3, and, if the result of Lemma 5.4 alsc holds, then we have
the conclusion of Thm. 5.2.

To simplify notation we suppress t, and also write




A
E, = E(t,f-—Ut,UA),
(5.14) J E. = E(t,f-u,,Pdw)
: 2 > 2P
L€, = C_(B,Ty,T,w.

By Lemma 5.3 we may write

|E. -E. | N
(5.15) 1 - ——lr—g-s =1+ 12,
2 2 2

which after application of Lemma 5.1 and, again, Lemma $.3

becomes
calhl'K
(5.16) 1 - —T— (heliptile i}

cs.hi¥

E
- 1
= E; =1 + ———c';—- {“9”E+||et”0}-
Under assumptions (5.1), (5.2), and (5.4), we may apply the

consequences (4.44%) - (4.47) of Thm. 4.1 to (5.16) and get

21 E1 24
(5.17) 1l - Célh = F; <=1 + cslh .

Now, by the definition of Pl: Hé -+ S

(5.18) ol = inf |lu-yll. = llell,
E ves E E
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and so by applying the triangle inequality to e = -p + 8
we have
(5.19) lolg = ey = lollz + foll.

By Lemma 5.3, (5.19) becomes

- K

el lelly  C&;h
(5.20) Ez——f;— He”E = Ez{tz + Ca ”e”E}a

1A

and using (4.uy4) (4.47) as in (5.17)

floll ol
E _ < E 2p

Setting h* = 6{1/“, we see in (5.17) that 3 a
positive constant Cl such that for h = Clh*,
(5.22) E, = E@+om") as h-o,

with constants in 0(h") as in (5.5), and therefore from
(5.21) we get

lellg "
(5.23) HeHE = E.-~—==(1+0(h")) as h = 0.

1 E2

The demonstration of Thms. 5.1, 5.2 now follows easily from
the results of Lemmas 5.2, 5.4, respectively.

We proceed to prove Lemmas 5.1 - 5.4,




43

Proof of Lemma 5.1. To further simplify notation we

write uA = Pfu and for 1 = j = N(a), nj(U) = nj(t,f-Uf,UA)

and nj(uA) = nj(t,f—ut,uA). By definitions (5.8), (5.9),

and the triangle inequality we have

N
(5.24) [E2-E2] = T |m2W-nldy]
1 72 . L 3 3
j=1
N hl
= L o1mar 15yl ¢ 1957041,
J=1 J
where
1 =3 =N,
_ A
sz - ”Lu +ut‘f”0,Ij

Using again the triangle inequality, the N-dimensional

Cauchy-Schwarz inequality, and (5.8) we get from (5.24) that

2
262 = 2{ | —i cpren? . +le.i? )}1/2
(5.25) - <
172 551 T2a; 0,1,7 "¢, 1,
N 172 .
. Z(n?(U)+n?<uA){} ) '
j=1 ] ]

It then follows from (2.1), (2.2), (5.9), and (5.10) that

3 a positive constant C such that




Y

By

2 2
(5.26) IEl-E2| = Ch(A){HGHE+HetHO}{El+E2},
fyom which the desired result follows.

Proof of Lemma 5.2. By Thms. 2.2, 2.3, and 3.1, the

assumption (5.1) guarantees that u ¢ CO([T*,T); D(L)).

0

Interpreting eqs. (2.14) as in (5.13) and applying [2, Thm. 7.1] s
(stated for u € Co(I) but valid in fact for u € H 3
XX ’ XX )

cf. also [4]), we have the desired result.

Proof of Lemma 5.3. Letting again uld - Pfu, we note
that for t,x € [T,,T) x Ij; 1 =j=N
(5.27) LuA(t,x) - (f(t,x)-—ut(t,x))
= (u,.-f-a uA+buA)(t x) = (au _-a_p_*+bp)(t,x).
t X X ’ XX X X i

It then follows from (5.8) that 3 a positive constant C

such that

(5.28) n§<t,f-x4

A 2 D2 2 .
£oY ) 2 Chj{lluxx(t, )”o,xj'”p(t)”z,xj}’

Summing for j = 1,N yields

2 A 2 2 2 2
(5.29) E“(t,f-ug,u) + Cho( ety 2 Ch™ (M) u, (%, Mo
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which by the «k-regularity of assumption (5.2) and the result

of Lemma 5.2 becomes

2 A C 2K 2
(5.30) E°(t,f-u,,ud) 2 (——-——————)h (M llu. (e, [[2.
o 1+Ch%(a) xx- 0 0
ca
Since by (5.2), Huxx(t,-)ﬂO > gI; vte [T,,T), we have

from (5.30) the result of Lemma 5.3.

We omit the proof of Lemma 5.4, as it is completely
analogous to that in [2, Thm. 7.3], where a sequence of
six asymptotic equalities related to a decomposition of the
indicators led to the desired result (cf. [8] for further
details). Roughly speaking, the properties (3.2u4) - (3.27)
assumed for asymptotic exactness require that the solution

is smooth and not relatively flat at any time t € [T*,T).

B | i i K uns o NI
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6. A Posteriori Error Estimates Revisited

The purpose in using a posteriori, rather than a priori
estimates to bound the error due to the numerical solution
of differential equations is to obtain more realistic bounds.
We expect that restrictive assumptions on admissible solution
classes and mesh partitions need to be imposed in order to
guarantee that an estimator is asymptotically exact. However,
it is desirable that an estimator is reliable, i.e. an upper
estimator, under far less restrictive and more easily
verifiable conditions.

We shall show that if the estimator E(',f-Ut,U)
introduced in Section 5 is modified through the addition of
a term, which takes more fully into account the t-dependence
of the problem and is of higher order in h, then we obtain
a reliable estimator for a class of problems occurring often
in practice, with no restrictions on the mesh family or mesh
size.

We assume that the solutions uf( ;uo,f) and

u( ;U Pof) of egs. (2.15), (2.16) are such that

O,
0 0
(6.1) £,£, € CO(L0,T);H),
(6.2) u, € P(L), and
(6.3) ud - phy for & € P.

0 170’




Note that from (6.1)
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and (6.2) we

have that

e c%ro,m; HY).

u € c%Co,T; (L)) and u,
pine 8 a2 , o e
= =< =
efine C ar”(a as in (2.1)) = Xl_ 1ni ﬂ;ﬂ7 .
4 €Hy 0
$#0
For t € [0,T) and A € P we define the estimator
A A 3
(6.4) E(t.£-U.,U%) = ] E,(t,8), where
£=1
(6.5) E.(t,A) = E(t,f-ud udy
. l ’ b ] t’
(6.8)  E.(t,8) = hn(a){ te‘a‘t‘“ezcs £ -ud udyast/?
: 2 " 0 ’*s “ss’’s ?
(6.7)
(;‘Ct/z -mincl,h<a>/tl/2>-E(o,u§<o>+Lu0-f(o>,0)
Ej(t,8) = 4 , if t > 0,
E(O,U€(0)+Lu0-f(0),0), if t=o0.
q

By (6.1), (6.2), and the fact that U® ¢ c®((0,T); S(a))

see that E(t,f-—Uﬁ,UA) is well-defined and computable,

given ul.

Note that

we

PP S

PO -y

RIS

N
3
I
E



L8
(6.8)
2
N(A) h?Y t A 1/2
- 3 -C(t-s)y 3 ,;;0 A Tyl
E2(t,A) h(a) jzl l2aj foe ”gg(Us+LU -f)(s, )HO’des

= O(h2(A)) as h(a) » 0, provided that u is

sufficiently smooth,
and that by (2.3), (8.1) - (6.3), and Lemma 2.1

(6.9) E(o,uﬁ(o>+LuO-f(0),0)

N(a) h2 , ) 1/2
{jzl T7§§ H(I-PO)(LuO-f(O))HO,Ij}

IA

ch(a){llu + 00,3

oll2

Suppose that for ¢ > 0 arbitrarily small, we either

assume

(6.10) in addition to (6.1}, (6.2) that uq €~H2+e and
£(0) ¢ He, or that

(5.11) t =T, >0 and n(a) = Ti/2(1-8).

Then from (6.5), (6.7) - (6.9) we see that

l+e

(6.12) E(t,f-uﬁ,uﬁ) . E(t,f—Uﬁ,UA) + 0(h*T8(8)) as h(a) ~ 0.

Since the exponential decay rates in Ez(t,A) and

E3(t,A) are overly pessimistic for any given problem, and
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since Ez(t,A) is related to the t-dependence of the local
indicators {n.} ._, . s a practical strategy for the
J J-l,.‘i(A)
implementation of E(t,f-Ut,U) would be to use only
- i Fo{n:).
E(t,f Ut,U),andtonmnltor some measure of {nj}jzl,N(A)
on a time interval [t-C_.hY¥,t]l, for some positive constants

0

CO and vy. We give no details here.

We shall show the following result.

Theorem 6.1. Assume (6.1) ~ (5.3). Then E(',f-Ut,U)

is an upper estimator for l!u-UiIE on [0,T), with h#* = 1.

Proof. The proof is based on a different decomposition

of the error e = u - U than that used in Section 5. We

write

(6.13) e(t) = el(t) + ez(t), where
(6.14) elty = vio - ulo,

(6.15) ety = ut) = vico),

and v% ¢ CO([O,T); D(L)) 1is defined by
A _ A
(6.16) Lvo(t) = (f-Ut)(t); t ¢ (0,T).

By (6.1) and the t-independence of the operator L, we

have that

vﬁ ¢ c%o,my; D(L))

and




£a
(6.17) i)y = (s -t ) ot oe [0,T)
: t B oS R A 2
From eqs. (2.15), (2.16),and the definition of P& HL ~ s(a)
it follows that
A a3 aj A .
(6.18) Py zmv(t,=) = s UT(t,+); t € [0,T), j =0 or 1.
Subtraction of egs. (2.18) from egs. (2.15) shows that
2 2
(6.19) ez(t) = ehl(t) + e“z(t), where
q
<elt(s),8>+ 82?1 (s),9) = —<el(s),6>5¥s,0 € (0,T) x HL,
(6.20)
ezl(O) = 0,
22 22 _ 1
<e_ (s),¢>+B(e""(s5),¢) = 03 Vs, €(0,T) % HO,
(6.21)
e?2¢a) = &%(0).
We show that there exists a positive constant C such that
for all t € [0,T) and each A € P
(6 1 <
.22) le (t)[lE = CEl(t,A),
21
(6.23) lle (t)HE = CEZ(t,A), and
22
(6.24) le (t)HE = C3E3(t,A),

which will complete the proof of Thm. 6.1.

By (6.16) and

(6.18), the estimate (6.22) follows from the result in
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{2, Thm. 7.1], as in the proof of Lemma 5.2.

Frem the t-independence of the operator L and

Xls/2 21

egs. (6.20), we get that the function w(s) = e e " (s)
satisfies
(5.25)

<ws(s),¢> + B(w(s),s) -~ - <w(s),é¢> = -e <es(s),¢>;
{ 1

VS,¢ G (O,T) x Ho,

Y w(0) = 0.

Setting ¢ = 2ws(s) in eq. (6.25) yields

X
‘ 2 2 2
(6.26) 2lw_(s)2 + &= (lw(s)lf - == Iw(s)Ig)
A,s/2
= -2e 1 <el(s),w (s)>.
S S

Integrating (6.26) on (0,t) for t € (0,T), applying

the Cauchy-Schwarz inequality, and using w(0) = 0 yields

Y t A.s
2 1 2 .1 17,1 2
(6.27) llw(t)[[E - 5 Hw(t)H0 =5 JO e Hes(s)nods,
which by the definitions of w,Xl, and 6 becomes
21 T C(t-8)y 1, yy24aq1/2
(6.28) e (t)HE = {j e Hes(s)HOds} .
0

By (6.18), s<e§<s>,w> -0 vs,y € (0,t) x S(a), and so

by a standard duality argument we have that
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t A
(5.2 lle?T (o)l = Ch(A){J e‘”(t'S)uei<s)n§ds}l/z.

0

Using the result in [2, Thm. 7.1], as in the demonstration

of (6.22), we get (6.23) from (6.29),

Defining now z(s) = e 1 e22(s), from eqs. (6.21) we

A
(6.30) <z_(5),6> + B(2(5),8) - — <z(s),8> = 0

1

¥s,é € (0,T) x Hg,

2(0) = e2(0).

Setting ¢ = ZZS(S) in (6.30) and using the same

arguments which led to (6.28) yields

21/2e-Ct/2”

(6.31) le?? (o = SICH

Consecutively setting ¢ = z(s) and 2zs(s) in (6.30)
and integrating on (0,t) yields

2 M 2 2
(6.32) 2t{l!z(t)llE -5 Hz(t)HO} = Hz(O)HO,

which by the definitions of =z, Xl, and C becomes

22 e-Ct/? 2
(6.33) ”e (t)"r = 'tT—z-—' lle (0)”0, for t > 0.

It follows from (6.3), (6.14), and (6.15) that
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(6.34) B(e(0),y) = 0 Wy € s(a),
which again by a standard duality argument shows that

(6.35) le? (o), = chead e (o),

and by the result in (2, Thm. 7.1] that

CE(0,Le2(0)-0,0)

1A

(6.36) Ile2<0)llE

CE(O,U€(0)+Lu0—f(O),O).

Combining (6.31), (6.33), (6.35), and (6.36), we have (6.24),

thus completing the proof of Thm. 6.1.




7. Computational Procedures and Examples

In this section we outline the main features of a
general FEMOL program which includes a posteriori error
analysis. The program is of a research type for assessing
various aspects and performances of the FEMOL procedure.
While it is not presently for commercial use, it includes
many user-oriented features employed in available commercial
software. The experiments using the program were directed
toward the evaluation of the efficiency of the approach and
the applicability of conclusions based upon the asymptotic
analysis presented in Sections u-6.

The discussion here is principally oriented to
selected examples, in which the exact solutions are available.
These solutions have forms typical of those arising often
with systems of linear and nonlinear parabolic equations
used in various applications, and include decay and sharp

transitions in time, oscillations, and travelling waves.

The model problem considered is that given by egs. (1.1),
where the coefficients a(x) = cosh(4x-2) and
b(x) = sinh(2x) are as pictured in figure 2, and the
functions Ugs f, and g are chosen to be the smooth,
compatible data such that the exact solution u of egs. (1.1)
is as given in each of the examples below. The theory in
sections 2-6 was presented for the case when the boundary

data g = 0, but holds more generally for eqs. (1.1).
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For t > 0, our goal is estimate [Je(t,*)|l with E(t),
where e = u - U 1is the space discretization error, the
computable a posteriori estimator E(¢) 1is as defined in

(1.4) and (5.9), and the norm [l |l is as defined in (1.2).

The theory in sections 2-6 was presented for the estimation
of He(t,')HE, where the norm |I'HE is defined in (2.u4),
but we note that up to higher order terms in the space mesh
size, He(t,')HE ~ MeCt, I .

Our evaluation of E(¢) 1is based upon the behavior of
the effectivity ratio ©6(+), defined in (1.5), and we shall
examine how it depends on the relative error EREL(')’ as
defined in (1.9).

The theory given in Section 5 showed that for sufficiently
(very) fine_partitions of the interval (0,1), 1/0(t) is
bounded uniformly for all t in a time interval of interest,
and 0(t) - 1 as the partitions are refined. We shall see
that 0(t) is near 1 for practically any partition of (0,1)
in the examples, and in fact appears to converge very rapidly
to 1 as the partitions are refined.

Before presenting our results, we first discuss some
of the relevant aspects of the computational procedures used
in the experiments and more general problems. For further
details we refer to a following paper [7] and [8].

All computations were carried out in double precision

arithmetic by the research program FEMOLl, which was i

written and implemented on the IBM 370 System in the Division
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of Computer PResearch and Technology, NIH. FEMOL1 has the
capabilities to solve coupled systems of linear and nonlinear

parabolic PDEs with piecewise linear elements in one space ]

dimension, with smooth or unsmooth initial data, and general
separated end-point boundary conditions. The program has

four basic stages of operation, consisting of (1) the processing
of control information, (2) the assembly of matrices, (3) the
initialization of data, and (4) the time-integration of the
resulting ODE system. Many of the standard user-oriented
features and logical switches employed in these four stages
were borrowed from existing software, much of which was
surveyed in [16]. When discontinuous changes in the space
mesh are allowed, decisions concerning these changes are made
adaptively and looping occurs in stages 2-4. We shall restrict
most of the discussion to those features relevant to the
experiments conducted here.

In the control stage, flags are set which govern the
number and type of PDEs solved, the space mesh used, and whether
or not the error is to be estimated, the true error is to be
computed, or adaptive mesh construction is to be employed.
Here, the target time points for output are also determined.

In the examples to be presented, 100 equally spaced time
points {Tm}m=l,100 were distributed over the time intervals
of interest, at which E&, llell, Eppr» and © were computed,

but other selections for output are possible.
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As in the computation of E, llell, E and 0,

REL?
FEMOL1 uses standard two-point Gaussian quadrature in the
assembly stage to compute the mass and stiffness matrices

and load vector needed for the reduction of eqs. (1.1) to an
implicit system of ODEs. This process of course introduces
the effects of the numerical integration into the computations.
After minimal testing, this effect was accepted for our
experiments with time-independent space meshes. In some of
the computations performed with adaptively constructed meshes,
however, these pollution effects were more significant and

an alternate procedure had to be adopted (cf. a following
paper [71).

With the smooth, compatible data in the examples here,
the discrete initial data was determined in the initialization
stage as the standard finite element approximation of the
solution of an elliptic boundary value problem. When the
initial data is not smcoth, FEMOL1 chooses the linear
interpolation as the discrete approximation.

The time-integration of the resulting ODE system is
accomplished in a subroutine with a version of Gear's
variable-step, variable-order backward differentiation
formulas which we modified to efficiently handle matrices
with banded structure. The ODE solver is essentially
equivalent to that in [12]. To ensure that the effects of

the time discretization did not pollute the results, very
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stringent error requirements were placed on the time
discretization scheme. The ODE solver used places equal
weights on the N-1 components {U<t’xj)}j=1,N-l in
attempting to control the relative time discretization error
per step. These are not the best criteria, in that each
component is given equal weight and that an error per unit
step tolerance probably has more meaning. While some minor
modifications in this procedure were made, these
inefficiencies were accepted for the sake of illustrating
the theoretical results. We experimentally adjusted the input
tolerance until the discrete time derivative Ut in each
example changed by less than 10—3 throughout the time
intervals of interest. This required relative error per
step tolerances on the order of 10-7 to 10-8. We emphasize
that these stringent requirements should not be used in
practice, but were made here to isolate the effects to be
stidied.

One of the main purposes in studying a posteriori error
estimates in the FEMOL solution of PDEs is the development
of more efficient algorithms. However, because of the
stringent requirements set above and the mentioned, and other
not mentioned inefficiences which were accepted for our
convenience, a quotation of CPU times used in the examples

is not relevant.

As a final computational note, we remark that all of
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the logical switches and capabilities of FEMOLl1l can be set
for a given problem by supplying subroutines for the problem

data and modifying less than 20 cards of input data.

Example 1. For 0 = t = 3 the exact solution u of

egs. (1.1) is taken to be

(7.1) uCt,x) = ul(t,x) + [F + Ftanh(10t-11)1 - u2(t,%0,

where

(7.2) ul(t,x)

2
-X
Lo eXP{m} > and

(7.3) ul(t,x) = 2 sin(mx) + 2 cos(2mt)sin(27x).

For 0=t =.9 u1 completely dominates the behavior

of u and u decays in t (cf. figure 3(a)). For
9 < t<l.1 u undergoes a sharp transition, and for
1.1 =t =3 the oscillatory character of u2 is dominant
(ef. figure 3(b)).
The FEMOL was implemented in this example for a

sequence of three uniform space meshes, using 10, 20, and

40 finite elements. Figure 4 shows the behavior of the errors

in time, and the linear rate of convergence is apparent.
For t > 1 the errors in this sequence oscillate about
the 10%, 5%, and 2.5% levels. Figure 5 illustrates how
well the estimator €E(+) works. For any of the meshes and
all t € [0,3] we see that the effectivity ratio @(*)

satisfies
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]
(7.4) joc(t) -1] = .07,
and that with 40 elements 1
(7.5) lo(t) -1] = .005; vt ¢ [0,3]. |

In addition to these unexpectedly good results, it

PO

appears that

2

(7.8) O(t) = 1+ 0(N °) as N »=; VYt ¢ [0,3],

a result much better than that which we could prove in

Thm. 5.2,

Example 2. For 0 =t = .1 the exact solution of

eqs. (1.1) is taken to be that defined in (1.8), namely

tanh [2B(x-10t)]); B = 20.

=

(7.7)  ult,x) = % +

The solution is a wave with approximate front width
B—l which moves in the positive =x-direction at speedllo,
and is as pictured in figure 1 in section 1.

As in Example 1, the estimator E(+) was tested by
implementing the FEMOL for a sequence of uniform space
meshes, using here 20, 40, 80, and 160 finite elements. In
figure 6 we see the oscillatory temporal character of the

error for 20 and 40 elements, due to the inability of the

mesh to resolve the wave front. The error again appears to

converge linearly for all t, provided that N 2 40. Note




that for N = 20(40) the error oscillates about the 50% (25%)

mark. In figure 7 we see that even in the case of 50% error,

the effectivity ratio 0O(+) satisfies

(7.8) = 0(t) =25 vt e [0,.1].

N -

Figure 8 illustrates that with an average error of about

25%, for almost all t € [0,.1]
(7.9) lo¢t)-1] = .1,

and that when N = 160 and the error is about 6% for each

t, we have
(7.10) loct)-1] = .005; vt € [0,.1].

The quality of these results does not appear to be
limited to the use of uniform space meshes, as experiments
with slightly nonuniform meshes in the same examples has
indicated. Also, we shall see in a following paper [7] that
the adaptively constructed meshes for Example 2 can be very
nonuniform, and yet the analogous effectivity ratio is close
to 1.

We finally remark that the norms ”.”E and <1l wused
in the analysis and computations were chosen because they are
the natural norms arising from the weak form of egs. (1.1).
In applications where there is no natural energy associated

with the system, or when some other characteristic is of




primary interest, then it may be desirable tc estimate

a different norm of the error. By altering the approximating
finite element subspaces and a posteriori estimator in our
procedure appropriately, such estimates can be obtained.
Nonetheless, the above results illustrate the robustness of

+he estimator E(+), even when apparently ocut of the

asymptotic range.
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Figure 6. Relative Error EREL(T) in Example 2 vs. T.
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Figure 7. Effectivity Ratio 0(T) in Example 2 vs. T.
N = Number of Uniform Finite Elements.
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